September 21, 2024

A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect

Hall #Hall

  • 1.

    Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903. https://doi.org/10.1126/science.aay5533 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Haldane, F. D. M. Model for a quantum hall effect without landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015 (1988).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 3.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170. https://doi.org/10.1126/science.1234414 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 4.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736. https://doi.org/10.1038/nphys3053 (2014).

    CAS  Article  Google Scholar 

  • 5.

    Kou, X. et al. Scale-invariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.113.137201 (2014).

    Article  PubMed  Google Scholar 

  • 6.

    Bestwick, A. J. et al. Precise quantization of the anomalous hall effect near zero magnetic field. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.114.187201 (2015).

    Article  PubMed  Google Scholar 

  • 7.

    Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. https://doi.org/10.1038/ncomms9474 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Feng, Y. et al. Observation of the Zero Hall plateau in a quantum anomalous Hall insulator. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.115.126801 (2015).

    Article  PubMed  Google Scholar 

  • 9.

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477. https://doi.org/10.1038/nmat4204 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 10.

    Kandala, A., Richardella, A., Kempinger, S., Liu, C. X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. https://doi.org/10.1038/ncomms8434 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Oh, S. The complete quantum hall trio. Science 340, 153–154. https://doi.org/10.1126/science.1237215 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 12.

    Jalil, M. B. A., Tan, S. G. & Siu, Z. B. Quantum anomalous Hall effect in topological insulator memory. J. Appl. Phys. https://doi.org/10.1063/1.4916999 (2015).

    Article  Google Scholar 

  • 13.

    Götz, M. et al. Precision measurement of the quantized anomalous Hall resistance at zero magnetic field. Appl. Phys. Lett. https://doi.org/10.1063/1.5009718 (2018).

    Article  Google Scholar 

  • 14.

    Lian, B., Sun, X. Q., Vaezi, A., Qib, X. L. & Zhang, S. C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl. Acad. Sci. 115, 10938–10942. https://doi.org/10.1073/pnas.1810003115 (2018).

    ADS  MathSciNet  CAS  Article  PubMed  MATH  Google Scholar 

  • 15.

    Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. https://doi.org/10.1126/sciadv.1500740 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. Proc. Natl. Acad. Sci. U. S. A. 112, 1316–1321. https://doi.org/10.1073/pnas.1424322112 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Wang, W. et al. Visualizing ferromagnetic domains in magnetic topological insulators. APL Mater. https://doi.org/10.1063/1.4921093 (2015).

    Article  Google Scholar 

  • 18.

    Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314. https://doi.org/10.1126/science.aan5991 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 19.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900. https://doi.org/10.1126/science.aax8156 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 20.

    Yin, J. X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536. https://doi.org/10.1038/s41586-020-2482-7 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 21.

    Deng, H. et al. Observation of high-temperature quantum anomalous Hall regime in intrinsic MnBi$_2$Te$_4$/Bi$_2$Te$_3$ superlattice. Nat. Phys. 17, 36–42. https://doi.org/10.1038/s41567-020-0998-2 (2021).

    CAS  Article  Google Scholar 

  • 22.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527. https://doi.org/10.1038/s41563-019-0573-3 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608. https://doi.org/10.1126/science.aaw3780 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70. https://doi.org/10.1038/s41586-020-2963-8 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-01062-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Bez, R. Innovative technologies for high density non-volatile semiconductor memories. Microelectron. Eng. 80, 249–255. https://doi.org/10.1016/j.mee.2005.04.076 (2005).

    CAS  Article  Google Scholar 

  • 27.

    Burr, G. W. et al. Access devices for 3D crosspoint memory. J. Vacuum Sci. Technol. B https://doi.org/10.1116/1.4889999 (2014).

    Article  Google Scholar 

  • 28.

    Aziz, A., Jao, N., Datta, S. & Gupta, S. K. Analysis of functional oxide based selectors for cross-point memories. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2222–2235. https://doi.org/10.1109/TCSI.2016.2620475 (2016).

    Article  Google Scholar 

  • 29.

    Virwani, K. et al. Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials. Int. Electron Dev. Meeting (IEDM) 2012, 2.7.1-2.7.4. https://doi.org/10.1109/IEDM.2012.6478967 (2012).

    Article  Google Scholar 

  • 30.

    Hirose, S., Nakayama, A., Niimi, H., Kageyama, K. & Takagi, H. Resistance switching and retention behaviors in polycrystalline La-doped SrTiO3 ceramics chip devices. J. Appl. Phys. https://doi.org/10.1063/1.2975316 (2008).

    Article  Google Scholar 

  • 31.

    Zhang, L., Govoreanu, B., Redolfi, A., Crotti, D., Hody, H., Paraschiv, V., Cosemans, S., Adelmann, C., Witters, T., Clima, S., Chen, Y. Y., Hendrickx, P., Wouters, D. J., Groeseneken, G. & Jurczak, M. High-drive current (>1MA/cm2) and highly nonlinear (>103) TiN/amorphous-Silicon/TiN scalable bidirectional selector with excellent reliability and its variability impact on the 1S1R array performance. International Electron Devices Meeting, (IEDM), 2014, 6–8, https://doi.org/10.1109/IEDM.2014.7047000 (2014).

  • 32.

    Lee, W. et al. Varistor-type bidirectional switch (J MAX>10 7A/cm 2, selectivity∼10 4) for 3D bipolar resistive memory arrays. Symposium on VLSI Technology 37–38, 2012. https://doi.org/10.1109/VLSIT.2012.6242449 (2012).

    Article  Google Scholar 

  • 33.

    Aziz, A., Shukla, N., Datta, S. & Gupta, S. K. Implication of hysteretic selector device on the biasing scheme of a cross-point memory array. International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 425–428, 2015. https://doi.org/10.1109/SISPAD.2015.7292351 (2015).

    Article  Google Scholar 

  • 34.

    Gopalakrishnan, K. et al. Highly scalable novel access device based on Mixed Ionic Electronic Conduction (MIEC) materials for high density phase change memory (PCM) arrays. Symposium on VLSI Technology 205–206, 2010. https://doi.org/10.1109/VLSIT.2010.5556229 (2010).

    Article  Google Scholar 

  • 35.

    Shenoy, R. S. et al. Endurance and scaling trends of novel access-devices for multi-layer crosspoint-memory based on mixed-ionic-electronic-conduction (MIEC) materials. Symposium on VLSI Technology 2011, 94–95 (2011).

    Google Scholar 

  • 36.

    Burr, G. W. et al. Large-scale (512kbit) integration of multilayer-ready access-devices based on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% yield. Symposium on VLSI Technology 41–42, 2012. https://doi.org/10.1109/VLSIT.2012.6242451 (2012).

    Article  Google Scholar 

  • 37.

    Weinreb, S., Bardin, J. C. & Mani, H. Design of cryogenic SiGe low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 55, 2306–2312. https://doi.org/10.1109/TMTT.2007.907729 (2007).

    ADS  Article  Google Scholar 

  • 38.

    Arakawa, T., Nishihara, Y., Maeda, M., Norimoto, S. & Kobayashi, K. Cryogenic amplifier for shot noise measurement at 20 mK. Appl. Phys. Lett. https://doi.org/10.1063/1.4826681 (2013).

    Article  Google Scholar 

  • 39.

    Ivanov, B. I., Trgala, M., Grajcar, M., Ilichev, E. & Meyer, H. G. Cryogenic ultra-low-noise SiGe transistor amplifier. Rev. Sci. Instrum. 8, 2. https://doi.org/10.1063/1.3655448 (2011).

    CAS  Article  Google Scholar 

  • 40.

    Dziuba, R. F., Field, B. F. & Finnegan, T. F. Cryogenic voltage comparator system for 2e/h measurements. IEEE Trans. Instrum. Meas. 23, 264–267. https://doi.org/10.1109/TIM.1974.4314288 (1974).

    Article  Google Scholar 

  • 41.

    Tolpygo, S. K. Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42, 361–379. https://doi.org/10.1063/1.4948618 (2016).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Yuh, P. F. A 2-kbit Superconducting memory chip. IEEE Trans. Appl. Supercond. 3, 3013–3021. https://doi.org/10.1109/77.257228 (1993).

    Article  Google Scholar 

  • 43.

    Liu, Q. et al. Latency and power measurements on a 64-kb hybrid Josephson-CMOS memory. IEEE Trans. Appl. Supercond. 17, 526–529. https://doi.org/10.1109/TASC.2007.898698 (2007).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Feng, Y. J. et al. Josephson-CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Trans. Appl. Supercond. 13, 467–470. https://doi.org/10.1109/TASC.2003.813902 (2003).

    ADS  CAS  Article  Google Scholar 

  • 45.

    Nagasawa, S., Hinode, K., Satoh, T., Kitagawa, Y. & Hidaka, M. Design of all-dc-powered high-speed single flux quantum random access memory based on a pipeline structure for memory cell arrays. Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/19/5/S34 (2006).

    Article  Google Scholar 

  • 46.

    Tahara, S. et al. 4-Kbit Josephson nondestructive readout ram operated at 580 psec and 6.7 mW. IEEE Trans. Magn. 27, 2626–2633. https://doi.org/10.1109/20.133751 (1991).

    ADS  Article  Google Scholar 

  • 47.

    Kirichenko, A. F., Mukhanov, O.A. & Brock, D. K. A single flux quantum cryogenic random access memory. In Extended Abstract of 7th International Superconductive Electronics Conference, 1999, 124–127 (1999).

  • 48.

    Braiman, Y., Neschke, B., Nair, N., Imam, N. & Glowinski, R. Memory states in small arrays of Josephson junctions. Phys. Rev. E 9, 4. https://doi.org/10.1103/PhysRevE.94.052223 (2016).

    Article  Google Scholar 

  • 49.

    Nair, N., Jafari-Salim, A., D’Addario, A., Imam, N. & Braiman, Y. Experimental demonstration of a Josephson cryogenic memory cell based on coupled Josephson junction arrays. Supercond. Sci. Technol. https://doi.org/10.1088/1361-6668/ab416a (2019).

    Article  Google Scholar 

  • 50.

    Collaudin, B. & Rando, N. Cryogenics in space: a review of the missions and of the technologies. Cryogenics 40, 797–819. https://doi.org/10.1016/S0011-2275(01)00035-2 (2000).

    ADS  CAS  Article  Google Scholar 

  • Leave a Reply