A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect
Hall #Hall
Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903. https://doi.org/10.1126/science.aay5533 (2020).
Haldane, F. D. M. Model for a quantum hall effect without landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018. https://doi.org/10.1103/PhysRevLett.61.2015 (1988).
Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170. https://doi.org/10.1126/science.1234414 (2013).
Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736. https://doi.org/10.1038/nphys3053 (2014).
Kou, X. et al. Scale-invariant quantum anomalous hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.113.137201 (2014).
Bestwick, A. J. et al. Precise quantization of the anomalous hall effect near zero magnetic field. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.114.187201 (2015).
Kou, X. et al. Metal-to-insulator switching in quantum anomalous Hall states. Nat. Commun. https://doi.org/10.1038/ncomms9474 (2015).
Feng, Y. et al. Observation of the Zero Hall plateau in a quantum anomalous Hall insulator. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.115.126801 (2015).
Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477. https://doi.org/10.1038/nmat4204 (2015).
Kandala, A., Richardella, A., Kempinger, S., Liu, C. X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. https://doi.org/10.1038/ncomms8434 (2015).
Oh, S. The complete quantum hall trio. Science 340, 153–154. https://doi.org/10.1126/science.1237215 (2013).
Jalil, M. B. A., Tan, S. G. & Siu, Z. B. Quantum anomalous Hall effect in topological insulator memory. J. Appl. Phys. https://doi.org/10.1063/1.4916999 (2015).
Götz, M. et al. Precision measurement of the quantized anomalous Hall resistance at zero magnetic field. Appl. Phys. Lett. https://doi.org/10.1063/1.5009718 (2018).
Lian, B., Sun, X. Q., Vaezi, A., Qib, X. L. & Zhang, S. C. Topological quantum computation based on chiral Majorana fermions. Proc. Natl. Acad. Sci. 115, 10938–10942. https://doi.org/10.1073/pnas.1810003115 (2018).
Lachman, E. O. et al. Visualization of superparamagnetic dynamics in magnetic topological insulators. Sci. Adv. https://doi.org/10.1126/sciadv.1500740 (2015).
Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3. Proc. Natl. Acad. Sci. U. S. A. 112, 1316–1321. https://doi.org/10.1073/pnas.1424322112 (2015).
Wang, W. et al. Visualizing ferromagnetic domains in magnetic topological insulators. APL Mater. https://doi.org/10.1063/1.4921093 (2015).
Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314. https://doi.org/10.1126/science.aan5991 (2017).
Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900. https://doi.org/10.1126/science.aax8156 (2020).
Yin, J. X. et al. Quantum-limit Chern topological magnetism in TbMn6Sn6. Nature 583, 533–536. https://doi.org/10.1038/s41586-020-2482-7 (2020).
Deng, H. et al. Observation of high-temperature quantum anomalous Hall regime in intrinsic MnBi$_2$Te$_4$/Bi$_2$Te$_3$ superlattice. Nat. Phys. 17, 36–42. https://doi.org/10.1038/s41567-020-0998-2 (2021).
Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527. https://doi.org/10.1038/s41563-019-0573-3 (2020).
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608. https://doi.org/10.1126/science.aaw3780 (2019).
Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588, 66–70. https://doi.org/10.1038/s41586-020-2963-8 (2020).
Chen, S. et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-020-01062-6 (2020).
Bez, R. Innovative technologies for high density non-volatile semiconductor memories. Microelectron. Eng. 80, 249–255. https://doi.org/10.1016/j.mee.2005.04.076 (2005).
Burr, G. W. et al. Access devices for 3D crosspoint memory. J. Vacuum Sci. Technol. B https://doi.org/10.1116/1.4889999 (2014).
Aziz, A., Jao, N., Datta, S. & Gupta, S. K. Analysis of functional oxide based selectors for cross-point memories. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 2222–2235. https://doi.org/10.1109/TCSI.2016.2620475 (2016).
Virwani, K. et al. Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials. Int. Electron Dev. Meeting (IEDM) 2012, 2.7.1-2.7.4. https://doi.org/10.1109/IEDM.2012.6478967 (2012).
Hirose, S., Nakayama, A., Niimi, H., Kageyama, K. & Takagi, H. Resistance switching and retention behaviors in polycrystalline La-doped SrTiO3 ceramics chip devices. J. Appl. Phys. https://doi.org/10.1063/1.2975316 (2008).
Zhang, L., Govoreanu, B., Redolfi, A., Crotti, D., Hody, H., Paraschiv, V., Cosemans, S., Adelmann, C., Witters, T., Clima, S., Chen, Y. Y., Hendrickx, P., Wouters, D. J., Groeseneken, G. & Jurczak, M. High-drive current (>1MA/cm2) and highly nonlinear (>103) TiN/amorphous-Silicon/TiN scalable bidirectional selector with excellent reliability and its variability impact on the 1S1R array performance. International Electron Devices Meeting, (IEDM), 2014, 6–8, https://doi.org/10.1109/IEDM.2014.7047000 (2014).
Lee, W. et al. Varistor-type bidirectional switch (J MAX>10 7A/cm 2, selectivity∼10 4) for 3D bipolar resistive memory arrays. Symposium on VLSI Technology 37–38, 2012. https://doi.org/10.1109/VLSIT.2012.6242449 (2012).
Aziz, A., Shukla, N., Datta, S. & Gupta, S. K. Implication of hysteretic selector device on the biasing scheme of a cross-point memory array. International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 425–428, 2015. https://doi.org/10.1109/SISPAD.2015.7292351 (2015).
Gopalakrishnan, K. et al. Highly scalable novel access device based on Mixed Ionic Electronic Conduction (MIEC) materials for high density phase change memory (PCM) arrays. Symposium on VLSI Technology 205–206, 2010. https://doi.org/10.1109/VLSIT.2010.5556229 (2010).
Shenoy, R. S. et al. Endurance and scaling trends of novel access-devices for multi-layer crosspoint-memory based on mixed-ionic-electronic-conduction (MIEC) materials. Symposium on VLSI Technology 2011, 94–95 (2011).
Burr, G. W. et al. Large-scale (512kbit) integration of multilayer-ready access-devices based on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% yield. Symposium on VLSI Technology 41–42, 2012. https://doi.org/10.1109/VLSIT.2012.6242451 (2012).
Weinreb, S., Bardin, J. C. & Mani, H. Design of cryogenic SiGe low-noise amplifiers. IEEE Trans. Microw. Theory Tech. 55, 2306–2312. https://doi.org/10.1109/TMTT.2007.907729 (2007).
Arakawa, T., Nishihara, Y., Maeda, M., Norimoto, S. & Kobayashi, K. Cryogenic amplifier for shot noise measurement at 20 mK. Appl. Phys. Lett. https://doi.org/10.1063/1.4826681 (2013).
Ivanov, B. I., Trgala, M., Grajcar, M., Ilichev, E. & Meyer, H. G. Cryogenic ultra-low-noise SiGe transistor amplifier. Rev. Sci. Instrum. 8, 2. https://doi.org/10.1063/1.3655448 (2011).
Dziuba, R. F., Field, B. F. & Finnegan, T. F. Cryogenic voltage comparator system for 2e/h measurements. IEEE Trans. Instrum. Meas. 23, 264–267. https://doi.org/10.1109/TIM.1974.4314288 (1974).
Tolpygo, S. K. Superconductor digital electronics: scalability and energy efficiency issues. Low Temp. Phys. 42, 361–379. https://doi.org/10.1063/1.4948618 (2016).
Yuh, P. F. A 2-kbit Superconducting memory chip. IEEE Trans. Appl. Supercond. 3, 3013–3021. https://doi.org/10.1109/77.257228 (1993).
Liu, Q. et al. Latency and power measurements on a 64-kb hybrid Josephson-CMOS memory. IEEE Trans. Appl. Supercond. 17, 526–529. https://doi.org/10.1109/TASC.2007.898698 (2007).
Feng, Y. J. et al. Josephson-CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Trans. Appl. Supercond. 13, 467–470. https://doi.org/10.1109/TASC.2003.813902 (2003).
Nagasawa, S., Hinode, K., Satoh, T., Kitagawa, Y. & Hidaka, M. Design of all-dc-powered high-speed single flux quantum random access memory based on a pipeline structure for memory cell arrays. Supercond. Sci. Technol. https://doi.org/10.1088/0953-2048/19/5/S34 (2006).
Tahara, S. et al. 4-Kbit Josephson nondestructive readout ram operated at 580 psec and 6.7 mW. IEEE Trans. Magn. 27, 2626–2633. https://doi.org/10.1109/20.133751 (1991).
Kirichenko, A. F., Mukhanov, O.A. & Brock, D. K. A single flux quantum cryogenic random access memory. In Extended Abstract of 7th International Superconductive Electronics Conference, 1999, 124–127 (1999).
Braiman, Y., Neschke, B., Nair, N., Imam, N. & Glowinski, R. Memory states in small arrays of Josephson junctions. Phys. Rev. E 9, 4. https://doi.org/10.1103/PhysRevE.94.052223 (2016).
Nair, N., Jafari-Salim, A., D’Addario, A., Imam, N. & Braiman, Y. Experimental demonstration of a Josephson cryogenic memory cell based on coupled Josephson junction arrays. Supercond. Sci. Technol. https://doi.org/10.1088/1361-6668/ab416a (2019).
Collaudin, B. & Rando, N. Cryogenics in space: a review of the missions and of the technologies. Cryogenics 40, 797–819. https://doi.org/10.1016/S0011-2275(01)00035-2 (2000).